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ABSTRACT Digital painting is a process of creating a digital artwork using modern human-computer
interaction technologies. One of the core enabling technologies is the real-time tracking of user’s strokes,
which is generally supplied by a digital tablet with a stylus. While the digital tablet technology provides
highly accurate tracking, the drawing should be done with a rigid stylus on a plastic surface. This sometimes
destroys the realism of drawing, such as interaction with the digital tablet cannot provide the feedback
of subtle texture, friction of the paper/fabric canvas and tension of soft painting brush. This becomes
particularly problematic for traditional painting artists who are trained with and prefer real painting brush and
paper/fabric canvas. Thus, the aim of this work is to present an alternative solution where the user’s strokes
can be tracked even when the actual brush and canvas are used. To this end, we proposed two approaches
for digitally tracking the tip of flexible bristles of a soft brush, so that the painting can be created digitally
on a computer. The first approach captures the silhouette of deforming bristles using a pair of well-aligned
infra-red (IR) cameras, which extracts the tip from the silhouette, and reconstructs the 2D position of the
tip. The second approach predicts the brush tip position through a deep ensemble network-based approach
where the relationship between the brush tip position and brush handle pose are trained with our novel model
comprising of Long-Short Term Memory Autoencoder and 1-D Convolutional Neural Network. The trained
model is used to predict the brush tip position in realtime. Both approaches extensively evaluated through
multiple tests. Furthermore, our model outperforms the state-of-the-art models.

INDEX TERMS Silhouette based tracking, deep ensemble network, long-short term memory autoencoder,
1-D convolutional neural network.

I. INTRODUCTION
In recent years, the digital painting market has grown a lot
in order to meet the modern art society’s demand. Digital
painting is accomplished by producing a digitized painting
artwork using modern human-computer interaction (HCI)
techniques on a computer. The interaction is usually done by a
stylus and a digital tablet [1]–[4]. The main job for this digital
tablet is to track the artist’s strokes, and the state-of-the-art
tablet technology allows very accurate tracking and capturing
of the strokes.

The associate editor coordinating the review of this manuscript and

approving it for publication was Victor Hugo Albuquerque .

Digital painting is less common in traditional painting. It is
partially due to that many traditional painting artists who are
trained with and prefer direct handling of a brush on a real
canvas, over rigid stylus pen on a slippery tablet, which often
destroys the realism of drawing, e.g., the feedback of subtle
texture of the canvas. There are many attempts to provide the
feeling of an actual brush and a canvas, e.g., brush-type stylus
and matt tablet surface, subtle tension and friction feedback
of which the artists make use for their performance, is still
different from their real counterpart [5]–[7].

In order to overcome the aforementioned issues, the focus
of the paper is to provide an alternative solution for the
traditional painting artists where we produce the artwork
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digitally using the real brush and real canvas, which reflects
the augmented reality-based interactive drawing. First, our
system tries to get rid of tablets and stylus from the digital
painting. Instead, our solution allows the artists to draw
actual artwork using the real brush and real canvas while
still digitally storing or recreating the artwork by estimating
the artist’s stroking accurately in real-time. This indicates the
need of new means of tracking the tip of the brush in the
canvas space, which is the main aim of the present paper.

To achieve this, we proposed two approaches. First
approach directly captures the silhouette of deforming
bristles of a brush through a pair of well-aligned infra-red (IR)
cameras. Then, the system extracts the tip out of the silhouette
and reconstructs the 2D position of it in the canvas space. This
is simple but very effective approach and, to our knowledge,
the first system that tracks the tip of the deforming brush
bristles in real-time through silhouette.

Since the first approach still needs a specially aligned
frame and cameras and has shortcoming in usability,
i.e., user’s hand may occlude the brush, we introduce
our second approach. Our second approach estimates the
brush tip position based on a novel deep learning network.
The relationship between the pose of the brush handle and
the brush tip position is trained with our specially designed
deep ensemble network using true data, and later the brush tip
position is predicted using only the pose of the brush handle.
In other words, once the deep ensemble network is trained,
the silhouette-based tracking is not needed at all to track the
brush tip, which makes the system simple, fast and easy to
use. To the best of our knowledge, this is also the first attempt
to employ the deep learning-based approach for modeling the
brush tip position.

Our approach is also advantageous over just capturing and
storing the final product of the drawing. Since the approach
can not only store the final product, but also capture the
sequence of the trajectories of the drawing in real time, it can
be used for other scenarios, e.g., sensorimotor skill training
where the stroking sequence and trajectories of a master can
be stored and used later for the training of students, and
augmented reality drawing where the artwork is digitally
visualized on real canvas in realtime even there is no actual
drawing is made.

The main contributions of this work is summarized as
follows.
• In order to track the brush tip position, a silhouette-based
brush tip tracking approach is proposed, which captures
the silhouette of deforming bristles of a brush through a
pair of well-aligned infra-red (IR) cameras.

• As another alternative, a deep ensemble network
comprising of 1-D CNN and LSTM Autoencoder is
designed for predicting the brush tip position, which
takes minimum information and accurately predicts the
tip position. The proposed 1-D CNN captures the spatial
information whereas the LSTM Autoencoder obtains
temporal features. The ensemble network is employed
to avoid overfitting and overconfidence.

• Extensive experimental analysis is conducted in order
to demonstrate the superiority of the two proposed
approaches over state-of-the-art models.

This paper is organized as follows. After reviewing
previous work on digital painting with special attention
on the tracking techniques in Section II, we introduce our
two approaches with implementation details in Section III
and IV, respectively. We also extensively evaluated the
performance of the approaches in Section V and summarize
our contribution as a conclusion in Section VI.

II. RELATED WORK
Numerous efforts have been made for computer-mediated
interactive drawing. The core technical component for this,
are the 2D, 2.5D, or even 3D pose tracking of a drawing tool,
i.e., stylus or brush. In general, tracking for digital drawing
can be categorized into two; external camera-based vision
tracking and capacitive-based or induction-based surface
tracking. This section reviews relevant research examples on
each category as well as researches particularly concerned
with the tracking of flexible bristles of a brush.

A. VISION-BASED TRACKING
Vision-based drawing tool tracking is usually employed
when an application requires 3D pose of the tool, e.g., 3D
interaction with a tangible tool in virtual or augmented reality
environments. For instance, ARPen is introduced for a 3D
modeling task, where a 3D-printed pen combined with a
smartphone is used [8]. The interaction was done in the
mid-air, which enables drawing and interacting with virtual
objects. Visual markers and ArUco, an OpenSource library
are utilized to track the position of the pen tip. Milosevic et al.
proposed a SmartPen for the sketch-based surface modeling
in [9], where a stereo webcam and Inertial Measurement
Unit (IMU) are utilized. These sensors provide sequences of
sorted 3D points, which are used to estimate the absolute
position and orientation of the pen tip. Their work permits
to obtain the style lines of actual objects, including concave
parts and shapes. Moreover, they presented sketch-based
modeling for automatically producing the 3D virtual model
using an interactive surface sketching approach. Similarly,
Wu et al. [10] introduced a system for tracking of a passive
stylus for drawing in augmented reality and virtual reality
environments. In their work, a square marker on the 3D
printed pen was applied and inter-frame corner tracking
is performed. In their work, they applied the pyramidal
LK optical flow algorithm to track the marker corners on
each frame. In [11], a 6DOF digital pen was designed for
performing drawing in the tablet as well as mid-air, where
a Vicon motion capturing camera is employed for tracking
the pen position and orientation. Although tangible tools
gave a solid feeling in interaction, these systems sometimes
require visually distracting markers that may disturb artists’
creativity and did not consider the tracking of a brush with
actual deforming bristles.
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B. SURFACE TRACKING
The most common way of digital drawing is to use a
digital tablet where a contact point between a tool and
the surface of the tablet can be tracked. In general, digital
tablets are provided with a stylus rigid tooltip or sometimes
support the tracking of bendable or flexible bristles for better
feedback.

1) RIGID STYLUS BASED
From both the consumer and academic perspective, the rigid
stylus type drawing pen has been explored the most to
perform the interactive digital painting and has a variety
of diverse implementations. The pressure-sensitive stylus is
the most common form of a stylus, which often supports
the tracking of different pressures. The pressure sensor is
utilized in [1], [2], [12] for performing the interactive digital
drawing. Han et al. [1] introduced a 6-DOFPen, namely IrPen
for drawing on tablets, which includes a pen tip, a pressure
sensor, 12 LEDs and a button. In their work, if the pen
strokes the tablet, then the pen tip pushes the pressure sensor,
which transmits the pressure value along with the button’s
state. The IrPen sensor’s components are a trans-impedance
amplifier and a band-pass filter. Similarly, in [3] and [13],
the capacitive magnetic field sensor is employed for tracking
the stylus position. Liang et al. [3] used thin magnetic sensor
grid which formed of Winson WSH138 Hall sensors in a
grid fashion. In their work, the magnetic field image is
captured in the frame by frame manner. Once a new image
is formed, the centroid of the employed magnetic field and
the magnitude of the field are captured as the position and the
magnitude respectively. Recently, FlexStylus was introduced
for painting on a tablet using an optical bend sensing
approach in [4]. Their work utilizes embedded optical sensors
to track deflection, rotation and position. The FlexStylus uses
four directional fiber optic sensors, which allows detecting
the directional bend. The FlexStylus is attached to a computer
utilizing an Arduino Uno. In the software part, the input of
each flex is mapped to a value within zero and one.

2) BRUSH WITH FLEXIBLE BRISTLES
In contrast, brush with flexible bristles is considered only in
a few studies for interactive digital drawing. For instance,
Vandoren et al. presented a digital painting interface, which
employed a new brush with infrared light carrying bristle
fibers for painting [5]. In their work, the paint table uses
an optical diffuse film surface whereas the paintbrush is
designed with an IR-led. Later on, Vandoren et al. proposed
an interactive canvas for digital paint system, which finds the
contact point of the brush with the painting canvas and the
direction of the brush bristles [6]. Their canvas includes three
layers: the transparent surface layer, the diffuser screen, and
the transparent support layer. The transparent surface layer is
the main drawing surface and it includes the contact sensor.
The second layer uses back-projection to display the painted
drawing. Finally, the third layer gives mechanical stability.

Furthermore, IR light is utilized to perform the interactive
drawing. Da Vinci VIRTO is a painting brush introduced for
drawing in the tablet using its conductive and well-protected
brush fibers [7]. In [14] a new brushmodel for digital Chinese
calligraphy was introduced where a set of energy functions
was considered to establish the brush dynamics. The above
examples tried to mimic the softness of the brush, but they
were not perfect due to non-paper or fabric canvas and the
form factor of the brush that differs from the real one.

III. SILHOUETTE-BASED BRUSH TIP TRACKING
The focus of the paper is to develop a hardware and soft-
ware framework that realizes the aforementioned scenario,
i.e., digitally capturing the artist’s stroking when drawing is
performed using a real brush on a real canvas. This allows
traditional painting artists to focus on their performance
during digital capture with minimum sense of difference
from that they are familiar with. The following requirements
should be set. First, the haptic texture of the surface touched
by the brush should be real, indicating that the surface
tracking techniques in normal digital tablet is not feasible
in our scenario. Second, the brush tool itself should remain
as intact as possible. According to personal communication
with two traditional Korean Buddhist artists, attaching even
small additional artifacts to the brush changes the weight
of the brush and significantly distracts the artists from
concentration.

Our first approach for the requirements is based on
image processing of infra-red silhouette. The main idea of
the approach is to use two IR cameras [15] to acquire
silhouettes of deformed bristles from multiple directions
and to reconstruct the 2D coordinate of the tip from the
silhouettes.

The hardware setup is shown in Figure 1. An external
tracker (V120 Trio; OptiTrack) [16] is installed in the system
and tracks the position and orientation (6DOF pose) of the
rigid handle of the brush.We specifically chose the OptiTrack
since it provides reasonably low position tracking latency
with higher accuracy compared to the IMU sensor-based
tracking [9], which well fits to our purposes. Furthermore,
the tracking system is very user friendly. This tracker has
three purposes. First, the pose of the brush handle is used to
detect the contact between the brush and the canvas. Second,
the possible area containing the contact is estimated from the
handle data and used to increase the accuracy and reliability
of the silhouette tracking. Third, captured handle data is used
for the evaluation of the system later.

For tracking the pose of the rigid handle, a retro-reflective
markers were attached to the handle as shown in Figure 1.
The weight of the markers is very small and perceptually
negligible (0.95 g). The Motive software from the OptiTrack
provides the 6DOF pose of the brush handle.

Additionally, two IR cameras (AR0330 CMOS) [15] are
attached to the rigid canvas plane in such a way that the
canvas plane is exactly at the center of and perpendicular
to the image plane of the camera. Two IR cameras are

115780 VOLUME 8, 2020



J. B. Joolee et al.: Tracking of Flexible Brush Tip on Real Canvas

FIGURE 1. Real canvas and real brush with the drawing setup for tracking
of flexible brush tip on real Canvas. A retro-reflective markers were
attached to the brush handle which is used to track the brush position
and orientation using an external tracker (V120 Trio; OptiTrack).
Additionally, two IR (infrared) cameras (AR0330 CMOS) are attached to
the rigid canvas plane, which are used to track the brush tip position.
An array of IR LEDs on the opposite side of each camera wrapped with a
semi-transparent paper that diffuses the IR light evenly.

placed at different sides of the rectangular canvas as shown
in the Figure 1. Wide-angle cameras are used (field of view
of 170 degrees) to increase the tracking space. Total tracking
space is 300 mm× 300 mm. The distortion of each camera is
estimated through an intrinsic parameter calibration process
with a checkerboard pattern and compensated in the tracking
procedure. The clarity of silhouette is enhanced by bright
IR background using an array of IR LEDs on the opposite
side of each camera wrapped with a semi-transparent paper
that diffuses the IR light evenly. Whenever the brush comes
between the camera and the corresponding LED, the body of
the brush creates a sharp silhouette as shown in Figure 2(e).
The software part of the system is implemented by

following a sequence of procedures. The procedure is
explained using a step-by-step approach as follow:
• Step 1: Brush Tip position Tpos Estimation

– Compute the current Tpos from the brush handle
pose coming from OptiTrack.

• Step 2: Intersection Point Pi Computation
– Calculate Pi from the intersection of Tpos and the

tracking plane ABCD defined on the surface of
canvas.

• Step 3: Camera Perspective Scaling factor S
– Calculate distance dx and dy from the camera refer-

ence line AB (x-axis) and BC (y-axis) respectively.
– Find the first order linear relation between the hori-

zontal plane and the camera perspective projection.

(Sx , Sy) = (axdx + cx , aydx + cy),

where S and d represents the scaling factor and the
distance from the camera line, respectively. a and c

FIGURE 2. Illustration of the procedures used in our approach. Detailed
explanation of the figures are in the following algorithms.

are the coefficients of the first order equation, and
the subscripts x, y are the corresponding axes.

• Step 4: Height of Cropping Window
– The camera reference line distance is used to

calculate the height of the croppingwindow in order
to remove possible brush reflections on the canvas
surface as shown in Figure 2(a).

• Step 5: Background Base Image Ib
– Capture background base image Ib without per-

forming the drawing and remove the distortion
using the camera distortion parameters as presented
in Figure 2(b).

• Step 6: Silhouette Extraction
– Capture the current Image Ic which includes the

brush during drawing and remove the distortion,
as presented in Figure 2(c).

– Crop both images Ib and Ic based on threshold value
and the window height calculated.

– Convert the images to gray-scale and subtract Ic
from Ib, as illustrated in Figure 2(d).

– Convert the subtracted image to binary by applying
a threshold value, which is shown in Figure 2(e).

• Step 7: Brush Tip Position (x, y) in 2D-Coordinates
– In order to find the brush tip from the silhouette of

the brush, each horizontal line of the binary image
is summed starting from the lowest line.

– If the summation of pixel values exceeds a certain
threshold the line is considered to contain the tip.

– Our approach finds the first pixels on either end of
the silhouette. The column of each selected pixel
is summed and the pixel with the minimum sum is
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considered as the position of brush tip in pixels Px
and Py along the designated axis (Px and Py in case
of Ic taken camera 1 and camera 2, respectively).

– The horizontal coordinate of the brush tip
is recorded in pixel number, as presented
in Figure 2(f).

– The position in pixels Px ,Py, and S are further used
to calculate the position of brush tip in real world
2D-coordinate (x, y) mm by using the following
relation:

(x, y) = (
Px × Sx

No. of Pixels in Horizontal line
,

Py × Sy
No. of Pixels in Horizontal line

)

The proposed silhouette-based approach can effectively
track the brush tip position. However, this approach needs a
specially aligned frame and cameras, which may increase the
complexity of the system. In addition, the user’s hand may
occlude the brush and occlusion problems may arise in the
IR cameras during drawing. As an alternative to remedy these
shortcomings, we introduce the second approach in the next
section.

IV. DEEP ENSEMBLE NETWORK-BASED
BRUSH TIP ESTIMATION
This section presents our second approach based on a novel
deep learning network, which overcomes the issues of the
silhouette-based approach. A newly designed deep ensemble
network is trained in offline using data captured through an
external tracker (Optitrack V120) and the silhouette-based
approach. The network captures the relationship between the
3D pose of a brush handle (6DOF data) and the 2D brush
tip position on the canvas. During actual drawing, the trained
network estimates the brush tip position by taking the brush
handle pose as an input, allowing us to use real canvas with a
real brush.

Figure 3 illustrates the overall data flow of the approach.
First step is the data collection where data for network
training are captured using the external trackers. We then
perform data pre-processing, which includes data cleaning
and normalization. Data cleaning is done in order to remove
the noise and outliers from the tracking data, while data
normalization is employed so that all data is in the proper
scale.

The characteristics of the data and relationship among
them are as follows. For each 6DOF time-series data
(handle pose), the network should produce corresponding
2DOF time-series data (tip position). The tip position
depends not only on current input, but also on previous
inputs and previous outputs. In order to cope with such
characteristics, our design combines LSTM Autoencoder
and 1D Convolutional Neural Network (CNN) as shown
in Figure 4. This ensemble network is employed mainly to
increase the representing powerwhileminimizing overfitting.

FIGURE 3. Proposed framework for deep ensemble network-based brush
tip estimation. Optitrack and IR cameras are used for collecting the data
for the deep network training. Once the network is trained, our model
estimate the tip position during actual drawing, taking the brush handle
pose from the Optitrak as an input.

Both the proposed LSTM Autoencoder and 1-D CNN are
responsible for the analysis of the time-series data. From our
extensive test, we confirmed that the ensemble of the two
networks significantly outperforms single network, as shown
in Section V. The following sections discuss the details of the
LSTM Autoencoder and 1-D CNN.

A. LSTM AUTOENCODER
The sequential information can be effectively mapped by
the Recurrent Neural Network (RNN) through hidden states.
However, if the inputs are long sequences, then simple
RNN-based methods may experience gradient explosion and
gradients vanishing problems. To train long sequences of
time-series data, the Long-Short Term Memory (LSTM)
was introduced, which includes input, forgetting, and output
gates [17]. The equations of LSTM at time t can be
represented as follows.

it = σ (Wi(xt + ht−1)+ bi) (1)

ft = σ (Wf (xt + ht−1)+ bf ) (2)

Ot = σ (WO(xt + ht−1)+ bO) (3)

Ct = ft � Ct−1 + it � tanh(Wc(xt + ht−1)) (4)

ht = Ot � tanh(Ct ) (5)
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FIGURE 4. Proposed deep ensemble network for predicting brush tip position. The proposed deep ensemble network combines LSTM Autoencoder
and 1D Convolutional Neural Network (CNN). LSTM Autoencoder includes four encoders and four decoders whereas 1D Convolutional Neural Network
includes three convolution layers, two max-pooling layers, and a fully connected layer.

where σ is the sigmoid function. i, f , c, o and h denote the
input, forget, memory cell, output gates and hidden layer
state, respectively. Wi,Wf ,WO and bi, bf , bO represents the
weight matrices and bias terms.

LSTM still suffers from prediction accuracy problem:
its accuracy for time series data is not always opti-
mal [18]. To improve the performance of LSTM, the LSTM
Autoencoder model was introduced particularly for video
representation [19]. It includes one encoder LSTM and one
decoder LSTM in its model. In their model, the LSTM
encoder accepts a sequence of frames and encodes them
to a fixed range feature vector, while the LSTM decoder
takes the feature vector and decodes it to produce a target
sequence. Later on, Sagheer et al. presented the LSTM-based
stacked autoencoder for multivariate time series forecasting
problems where three LSTM autoencoders are sequentially
stacked [18].

In the present paper, we also use LSTM Autoencoders
for the prediction. However, instead of sequentially stacking
autoencoders (encoder-decoder pair) as in [18], we first put a
list of LSTM encoders with gradually decreasing number of
nodes, followed by LSTM decoders with increasing number
of nodes. The overall design of our LSTM autoencoder
network is shown in the upper part of Figure 4. The
first LSTM encoder reads the input data and produces
128-feature outputs with 3 time steps. The second LSTM
encoder takes the 3 × 128 input from the previous encoder
layer and decreases the feature-length to 64, while the
third and fourth LSTM encoder reduces the feature size to
32 and 16, respectively. Afterward, LSTM decoder modules

decode the features. Additionally, a Repeat Vector layer is
employed between the encoder and decoder which replicates
the feature vector and operates as a bridge. At the end,
a time distributed layer is utilized to obtain the output, which
allows one-to-one relations between input and output data.
We expect that the proposed LSTM autoencoder can learn
more complex relationships among input layers and output
layers for the given input (i.e. brush pose and brush tip
position). Here, the high-level layers can learn features from
lower layers and obtain higher-order and can have better
summarizing power of inputs. Furthermore, it compresses
the useful information layer by layer and brings performance
improvement, compared with [18] where the output of
one LSTM autoencoder is the input to the next LSTM
autoencoder.

B. 1D CONVOLUTIONAL NEURAL NETWORK
Convolutional Neural Networks (CNN) based prediction is
the most commonly investigated deep learning approach in
various fields of computer vision and image processing and
has achieved outstanding performance [20], [21] [22]. While
original CNN is usually studied to capture the features from
images, we proposed a novel 1D CNN model with residual
connection for the investigation of the time series data
(brush tip position, brush handle pose over time). Previously,
in [24], the authors introduced a novel 1D CNN network
for time series data prediction, which is composed of two
convolutional layers, two max pooling, followed by a fully
connected layer.
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FIGURE 5. Examples of true and estimated data trajectories (upper) and the errors between
two (lower) for our first approach (Silhouette-based).

Our proposed 1D CNN with residual connection is
composed of three 1D convolutional layers and two 1D
max-pooling layers followed by one fully connected layer
as shown in the lower part of Figure 4. Compared to [24],
the proposed deeper 1D CNN captures more discriminative
features, which helps to improve the prediction accuracy. The
convolutional layers extract the features, and themax-pooling
layers reduce the dimensionality of the individual feature
map. For the first two convolutional layers, 64 filters are
employed with kernel size 2, and for third convolutional
layers, 128 filters are applied with kernel size 2, while
max-pooling is performed over a window size 2. Further-
more, each convolution process is followed by Rectified
Linear Unit (ReLU), which is a nonlinearity function. In the
residual connection, the output of the first convolutional layer
is concatenated with the output of the first max-pooling
layer while the output of the second convolutional layer
is concatenated with the output of the second max-pooling
layer. Afterward, a flatten layer is applied before the fully
connected layer to convert the feature size to a 1D vector.
The network concludes with a fully connected layer and
a regression output layer. In this model, the loss function
used is Root Mean Squared Error (RMSE) and the optimizer
employed is Adam.

Lastly, the outputs from the both networks are combined
through a mean operation at the end of the model, as shown in
the right-most part of Figure 4, generating the final predicted
brush tip position.

V. ACCURACY EVALUATION
We perform a series of experiments to assess the accuracy of
the tracking. All the experiments are conducted on Intel(R)

Core(TM) i5-7600 CPU @3.50GHz with 16GB RAM run-
ning Windows 10. The proposed deep ensemble network is
trained offline using data captured through an external tracker
(Optitrack V120) and the silhouette-based approach. During
actual drawing, the trained network estimates the brush tip
position by taking the brush handle pose as an input, allowing
us to use real canvas with a real brush. During the testing
process, the system works in real-time, since at that time,
it only tracks the brush handle pose (position and orientation)
and the proposed deep ensemble network takes this brush
handle pose as input and predicts the brush tip position in
real-time.

A. SILHOUETTE-BASED TRACKING
To get ground-truth position data of the brush tip, a very
small (diameter of 3 mm) spherical retro-reflective marker
is glued at the tip of the painting brush. The position of the
marker can be tracked through OptiTrack tracker. Note that
this setup cannot be used in our application scenario since real
paint blocks the marker. For data collection, we performed
multiple strokes for 60 seconds on the surface inside the
tracking region. The position data was recorded with both
systems, i.e., OptiTrack and our silhouette-based tracking
system. Figure 5 shows the comparison of data recordingwith
both systems.

The Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) recorded from the experiment for tracking
brush tip position is 1.352 mm and 1.57 mm, respectively.
Overall, in most cases, less than 1.5 mm error was observed.

B. ENSEMBLE NETWORK-BASED ESTIMATION
In order to obtain data for training the deep network in
our second approach, a traditional Korean Buddist painting
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FIGURE 6. Examples of pictures drawn by a master of the Korean
traditional Buddhist art.

master was invited and asked to actually perform his painting.
The master has drawn several drawings, which took almost
2 hours. Figure 6 shows some examples of the paintings
that he has drawn. While he performs, we collected data
of the brush tip position using our first approach. Note
again that direct attachment of small marker at the tip
was not feasible since the master was actually drawing
the artwork with real paints. Instead, we decided to use
the results of our silhouette-based system as a ground-truth
data for model training. Although the first approach indeed
has some tracking error, we still think that it can be used
for the purpose of the evaluation of the second approach
due to two reasons. First, the error is very small since it
is direct vision-based measurement. Second, errors from
the silhouette-based tracking do not significantly affect the
results in this section since this section examines how well
our second approach estimates the input, whatever the input
is. In order to evaluate the performance of the proposed deep
ensemble network, total 10 drawings are performed, of which
6 drawings are used for training the deep ensemble model
and 4 drawings are performed for testing the proposed deep
ensemble network. Table 1 illustrates the number of instances
used for training and testing the proposed deep ensemble
model. Each instance consists of brush tip position, brush
handle position and brush handle orientation.

To demonstrate the superiority of the proposed deep
network model over other state-of-the-art models, we addi-
tionally implemented 6 other networks and trained them
with the same data. The six models are an ARIMA predic-
tor [23], 1D CNN [24], single Layer LSTM, deep long-short
term memory (DLSTM) [25], multi-layer Bi-LSTM and
LSTM-based stacked autoencoder (LSTM-SAE) [18].

Figure 7 and 8 illustrates the architecture of the single-layer
LSTM and multi-layered bi-LSTM model, respectively. In
the single-layer LSTM, the network starts with a sequence
input layer followed by an LSTM layer. The network ends

TABLE 1. Number of instances used for training and testing the proposed
deep ensemble model. Each instance consists of brush tip position, brush
handle position and brush handle orientation.

FIGURE 7. Architecture of single Layer LSTM, which includes a sequence
input layer, an LSTM layer, and a fully connected layer.

FIGURE 8. Architecture of multi-layered Bi-LSTM network, which
comprises of a sequence input layer, two Bi-LSTM layers and followed by
a fully connected layer.

with a fully connected layer and a regression output layer. The
multi-layered bi-LSTM comprises of two bi-LSTM layers
followed by the fully connected layer and a regression output
layer.

The error metric was the RootMean Square Error (RMSE),
which can be expressed by

RMSE =

√√√√ 1
M

M∑
i=1

(xi − x i)2, (6)

whereM is the total sample, x i represents the predicted value
and xi is the ground-truth of the i− th sample.

Figure 9 shows the examples of measured and estimated
trajectories for the drawings. The predicted trajectories
coincide quite well with the measured ones. For better
visualization, Figure 10 plots the correlation between the
measured and estimated data. For all cases, the correlation
coefficient reaches up to 0.91. Statistics on the estimated
errors for all the models are summarized in Figure 11.
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FIGURE 9. Data trajectories of true brush tip and predicted brush tip using our second approach
(deep ensemble network) for both x and y axis. Blue line represents the actual tip position
whereas red line represents the predicted tip position.

FIGURE 10. Correlation between predicted and actual brush tip position
for all drawings using proposed deep ensemble network.

As it is clearly shown, the proposed framework outperforms
the other approaches by showing significant improvement.
Table 2 presents the RMSE of the test models. For all the

FIGURE 11. Statistics on the prediction error of our EnsembleNetwork
method compared with other state-of-the-art methods. Tip position x and
y are combined by taking the magnitude.

experiments, the proposed deep ensemble network shows the
lowest RMSE. These experiments prove the superiority of the
proposed approach over state-of-the-art models.

The results demonstrate that the proposed deep ensemble
network is capable of estimating the brush tip position with an
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TABLE 2. The results of comparison between proposed deep ensemble
network and the state-of-the-art methods. The numbers represent the
RMSE (root mean square error) in millimeter for both x and y tip position.

FIGURE 12. Original drawing (left) compared with digitally drawn images
using true date (center) and predicted data (right).

average error of ±1 mm. These results are satisfactory con-
sidering the size of the drawing canvas area (300× 300 mm)
and the size of the painting drawn. Figure 12 presents
the qualitative result for visualizing the produced drawing
by the silhouette-based approach utilizing actual brush tip
position and deep ensemble network-based approach using
the predicted brush tip position respectively. From this result,
we can observe that the predicted one is almost equivalent to
the ground truth.

VI. CONCLUSION
In this work, we introduced silhouette-based and deep
ensemble network-based approaches to track the brush
tip position for interactive drawing. The silhouette-based
approach captures the silhouette of deforming bristles using
a pair of well-aligned infra-red (IR) cameras, extracts the
tip using our proposed tracking procedure and then the 2D
position of the tip is reconstructed. However, this approach
still needs a specially aligned frame and cameras and
has shortcoming in usability. So, in order to overcome

this limitation, we proposed a deep ensemble network
that predicts the brush tip position by taking the brush
handle position and brush orientation as input. Using this
predicted brush tip position, we can achieve an interactive
drawing. Lastly, experiments are conducted to demonstrate
the superiority of the proposed deep ensemble network over
state-of-the-art models.

In the current work, we only consider a standard size brush.
To increase the applicability of the system as a future work,
we will consider identifying the different traits with different
kinds of brushes as well as their calibration process.
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